BRIDGE CENTRALITY: IDENTIFYING BRIDGE SYMPTOMS IN PSYCHOPATHOLOGY NETWORKS

Payton Jones

Harvard University

Master's Thesis Presentation

Mental Disorder Comorbidity

MOTIVATING QUESTION:

CAN WE DETECT BRIDGE NODES IN COMPLEX NETWORKS?

BRIDGE CENTRALITY

bridge strength =
$$\sum_{b \in (N(a) - V(A))} |w_{ab}|$$

bridge betweenness
$$= \sum_{i \in V(G)} x$$

bridge closeness =
$$\frac{\left|V(G) - V(A)\right|}{\sum_{b \in (V(G) - V(A))} \sum_{e_k \in E(P_{ab})} \frac{1}{w_k}}$$

bridge =
$$\sum_{b \in (N(a) - V(A))} w_{ab}$$

Bridge Strength

Bridge Betweenness

Bridge Betweenness

Bridge Closeness

Bridge Expected Influence

IS BRIDGE CENTRALITY ACCURATE?

Study 1: Detection in simulations

Trials:

- 1. Adding noise
- 2. Adding causal direction
- 3. Adding uncertainty about clusters
- 2 x 2 x 2 x 500 = 4,000 simulations

Specificity

-15% false` alarms

85% correct rejections

IS BRIDGE CENTRALITY USEFUL?

Study 2: Simulation of contagion

- 1. Start with one community activated
- 2. Allow the activation to spread over many iterations

Study 2: Simulation of contagion

- 1. Start with one community activated
- 2. Allow the activation to spread over many iterations
- 3. Treat a limited number of nodes
- 4. Bridge centrality vs. previous metrics

DOES BRIDGE CENTRALITY WORK IN REAL LIFE SITUATIONS?

RE-ANALYSIS:

- 18 published networks
- Bridge symptoms reported by researchers

Bridge symptoms indicated by bridge centrality

HOW CAN I USE BRIDGE CENTRALITY?

BRIDGE CENTRALITY: BEYOND MENTAL DISORDERS?

- Social Anxiety Depression
- Grief Growth
- Borderline Personality Narcissistic Personality
- State-Trait Anxiety Neuroticism
- Cognitive Affective (Attitudes)

	А	В	С	D	Е	F	G	Н	I	J
1	scaleX_1	scaleX_2	scaleX_3	scaleX_4	scaleX_5	scaleY_1	scaleY_2	scaleY_3	scaleY_4	scaleY_5
2	3	4	3	4	3	4	2	5	3	3
3	1	3	5	2	5	1	1	1	3	1
4	3	4	3	3	4	1	5	2	2	1
5	1	4	2	4	2	1	5	3	2	3
6	1	3	5	2	2	4	1	4	1	4
7	2	5	2	3	3	5	3	2	4	4
8	4	5	2	1	3	1	2	3	2	5

<u>GENERATE A NETWORK</u>

network <- qgraph(cor(data),</pre>

graph="glasso",

sampleSize=1000)

DEFINE COMMUNITIES

communities <- c(rep("1", 11), rep("2", 9))</pre>

BRIDGE CENTRALITY

b <- bridge(network, communities)
plot(b, include="Bridge Strength")</pre>

THANK YOU!

<u>Read the preprint:</u> https://osf.io/c5dkj/

<u>Use the R package:</u> networktools

